As expected, the Raspberry Pi Pico 2 W – the wireless version of the Raspberry Pi Pico 2 – is now available with an extra 2.4GHz WiFi 4 and Bluetooth 5.2 wireless module at an official price of $7. We’ll go through the specs and perform a mini review in this post trying out both WiFi and Bluetooth code samples. It’s not the first Raspberry Pi RP2350 with WiFi and Bluetooth we’ve seen, as Pimoroni introduced the Pico Plus 2 W board with an RP2350B MCU and Raspberry Pi RM2 Wi-Fi and Bluetooth module, and iLabs launched the Challenger+ RP2350 WiFi6/BLE5 board relying on ESP32-C6 wireless module. However, the Raspberry Pi Pico 2 W is the official board, is cheaper, and will certainly be the most popular/widely used. Raspberry Pi Pico 2 W specifications Raspberry Pi Pico 2 W specifications: SoC – Raspberry Pi RP2350 CPU Dual-core Arm Cortex-M33 @ […]
nRF54L15 DK: A Development Kit for nRF54L15, nRF54L10, and nRF54L05 SoCs with Bluetooth, Thread, and Zigbee
The nRF54L15 DK is a development kit designed to evaluate the wireless SoCs of the nRF54L15, nRF54L10, and nRF54L05 wireless SoCs. These SoCs support multiple wireless protocols, including Bluetooth Low Energy, Bluetooth Mesh, Matter, Thread, Zigbee, and 2.4GHz proprietary protocols, with data rates of up to 4Mbps. The kit integrates the nRF54L15 SoC and provides emulation capabilities for the nRF54L10 and nRF54L05, enabling flexible testing and development across the nRF54L Series. The nRF54L series SoCs differ in memory configurations to meet various application requirements. The nRF54L15 includes 1.5 MB of non-volatile memory (NVM) and 256 KB of RAM for high-performance applications. The nRF54L10 features 1.0 MB of NVM and 192 KB of RAM for mid-range use cases, while the nRF54L05 offers 0.5 MB of NVM and 96 KB of RAM for entry-level designs requiring fewer resources. The kit is supported by the nRF Connect SDK and tools, providing access to […]
Qualcomm QCC730M dual-band WiFi 4 and QCC74xM WiFi 6, BLE 5.3, and 802.15.4 modules target low-power and IoT edge devices
Qualcomm has added two new IoT modules to its wireless connectivity product series: the Qualcomm QCC730M ‘micro-power’ WiFi 4 module and the QCC74xM tri-radio module, with both modules designed for smart homes, smart appliances, medical devices, and industrial applications. The Qualcomm QCC730M is a dual-band, micro-power Wi-Fi 4 module with a 60MHz Arm Cortex-M4F MCU, 640kB SRAM, 1.5MB RRAM, hardware crypto accelerator, and secure boot, debug, and storage. Its low-power design is ideal for portable, battery-powered IoT devices like IP cameras, sensors, and smart locks. Based on the Qualcomm QCC730 module, it features a 36-pin LGA package with a PCB antenna or RF connector and supports up to 4MB of optional NOR flash. The Qualcomm QCC74xM is Qualcomm’s “first programmable connectivity module,” integrating a 32-bit RISC-V module, optional stacked memory (PSRAM and NOR flash), and a tri-radio chipset for WiFi 6, Bluetooth 5.3, and IEEE 802.15.4 (Thread and Zigbee). Its […]
Giveaway Week 2024 – RAKwireless Blues.ONE LoRaWAN, LTE-M, and NB-IoT devkit
For the fourth year in a row, RAKwireless is participating in CNX Software’s Giveaway Week, and this year, the company is offering the Blues.ONE IoT development kit with LoRaWAN, LTE-M, and NB-IoT connectivity and 500MB of cellular data through the Blues NoteCard. The devkit can be used to prototype or develop IoT devices for industrial automation and asset-tracking applications and relies on the WisBlock modular IoT prototyping system with the RAK13102 WisBlock Blues Notecarrier, the Blues NoteCard, a WisBlock Base Board, and a WisBlock Core module. Blues.ONE kit content: RAK4631 WisBlock Core Module based on Nordic Semi nRF52840 Arm Cortex-M4F microcontroller @ 64 MHz with 1 MB Flash, 256 KB RAM, Bluetooth Low Energy 5.0 protocol stack Semtech SX1262 LoRa Transceiver with LoRaWAN 1.0.2 protocol stack RAK19007 WisBlock Base Board with 4x sensor slots, 1x IO slot, a USB Type-C port, a rechargeable battery connector, and a solar panel connector […]
Waveshare ESP32-P4-NANO board offers Ethernet, WiFi 6, Bluetooth 5, MIPI display and camera interfaces, GPIO headers
Waveshare ESP32-P4-NANO is the first third-party ESP32-P4 RISC-V board we’ve seen and it follows the launch of the Espressif Systems’ ESP32-P4-Function-EV-Board devkit introduced this summer. While the ESP32-P4 is a general-purpose microcontroller, the ESP32-P4-NANO board still implements wireless connectivity through an ESP32-C6 WiFI 6 and Bluetooth LE 5.4 module and offers a range of interfaces such as an Ethernet RJ45 port with optional PoE, MIPI DSI and CSI interfaces, a USB Type-A OTG port, and GPIO headers for expansion. ESP32-P4-NANO specifications: Microcontroller – ESP32-P4NRW32 MCU Dual-core RISC-V microcontroller @ 400 MHz with AI instructions extension and single-precision FPU Single-RISC-V LP (Low-power) MCU core @ up to 40 MHz GPU – 2D Pixel Processing Accelerator (PPA) VPU – H.264 and JPEG codecs support Memory – 768 KB HP L2MEM, 32 KB LP SRAM, 8 KB TCM, 32MB PSRAM Storage – 128 KB HP ROM, 16 KB LP ROM Wireless module – […]
Seeed Studio’s XIAO MG24 and XIAO MG24 Sense boards target battery-powered Matter and BLE applications
Seeed Studio has added two members to its XIAO family of tiny MCU boards with the XIAO MG24 and XIAO MG24 Sense boards based on Silicon Labs EFR32MG24 multi-protocol wireless SoC and designed for battery-powered Matter over Thread and Bluetooth LE 5.3 applications. Both 21×17.8 mm USB-C boards feature a 78MHz Silabs MG24 Cortex-M33 microcontroller with 256kB SRAM and 1536KB flash, an additional 4MB SPI flash on-board, and 22 pins and pads for GPIO pins, analog inputs, and power signals, plus a reset button and two LEDs. The “Sense” model adds an analog microphone and a 6-axis IMU sensor. XIAO MG24/MG24 Sense specifications: SoC – Silicon Labs EFR32MG24 (EFR32MG24B220F1536IM48-B) MCU cores Arm Cortex-M33 @ 78.0 MHz with DSP instruction and floating-point unit for user application Arm Cortex-M0+ core for wireless Memory – 256 KB RAM Storage – 1536 KB flash Wireless protocols – Matter, OpenThread, Zigbee, Bluetooth Low Energy 5.3, […]
Seeed Studio launches ESP32-C6-powered 60GHz mmWave human fall detection and breathing/heartbeat detection sensor kits
Last year, we reviewed the MR60FDA1 60GHz mmWave fall detection sensor kit, which utilizes the XIAO ESP32C3 module as its core. This module, featuring both Wi-Fi and Bluetooth connectivity, opens up various IoT applications. Now, Seeed Studio has introduced advanced mmWave sensor modules specifically designed for enhanced fall detection and heartbeat monitoring. The MR60FDA2 is optimized for fall detection, while the MR60BHA2 is designed for heartbeat monitoring. Powered by an ESP32-C6 WiFi 6 and RIS-Bluetotoh LE microcontroller, these modules offer reliable detection for real-time fall monitoring and accurate heartbeat tracking. They also feature customizable RGB LEDs and ambient light sensors, providing additional flexibility. With expansion options via Grove GPIO ports, these versatile modules are well-suited for applications like smart home integration and healthcare monitoring. Previously, we covered the RoomSense IQ and the DesignCore RS-6843AOPU with mmWave technology. The RoomSense IQ is an ESP32-S3-based modular room monitor with mmWave radar presence […]
DALI2 expansion module for ESP32-C6-Pico and ESP32-S3-Pico boards facilitates Smart Lighting integration
Waveshare has recently launched the Pico-DALI2 expansion module for ESP32-Pico series boards designed to enable DALI communication for customized control of multiple lighting groups. It is compatible with development boards such as the ESP32-C6-Pico and ESP32-S3-Pico and includes a DALI communication screw terminal for connecting external DALI devices. DALI (Digital Addressable Lighting Interface) is a standardized protocol used for lighting control in building automation systems. The latest version of the DALI2 protocol is better than the old one in that it offers enhanced interoperability, additional features like multi-master configurations, and better energy management capabilities. DALI2 devices can communicate bidirectionally, meaning controllers can send commands and also receive status feedback from lighting devices, allowing for more complex automation and diagnostics. We can get more information about DALI from Wikipedia. We have previously seen the uses of DALI in Texas Instruments MSPM0 Arm Cortex-M0+ microcontrollers as an interface and in Acme CM3-Home […]